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Abstract

For a given symplectic manifoldM we consider the bundle whose base is the space of Kähler
structures onM, and whose fibers are the corresponding Kähler quantizations ofM. We analyse
the possible parallel transports in that bundle and the relation between the holonomy of some of
them and the Berry phase. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

To quantize a symplectic manifold(M,ω), it is necessary to choose a polarization of
M. For a fixed polarizationI , the corresponding quantizationQI is constructed according
to a well known procedure [29]. The purpose of this paper is to analyse the problem of
identifying the spacesQI obtained by fixing different polarizations. This identification is
one of the goals of the geometric quantization, but “the theory is far from achieving this
goal” (see [7, p. 267]). We study this issue when the polarizations considered are of type
Kähler, i.e., when the polarizations are complex structures onM compatible withω. When
I is a Kähler polarization,QI is the spaceH 0(LI ) of global sections of a holomorphic line
bundleLI . This bundle is defined giving a holomorphic structure to the prequantum bundle
L by means of the complex structureI . To define the referred identification, Hitchin [10]
proposes to introduce a flat connection on the “quantum bundle” [1], the bundle whose fibres
are the Kähler quantizations; then the parallel transport would provide an identification of
the different fibres.
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The quantization of the moduli space of flat connections on a closed surface6was studied
in [1], and the idea proposed by Hitchin is applied to get the identification of some particular
quantizations. In this case the manifoldM is the symplectic quotient of an affine symplectic
manifold; this fact allows to consider the complex structures onM, determined by the
translationally invariant complex structures on the affine manifold. This restriction leads
to a natural construction of the quantum bundle over this subspace of quantizations and to
define a flat connection on it. The quantization of this moduli space was also studied in [10]
in an algebraic–geometric context; here only the complex structures are considered onM

which are induced by conformal structures on6. Over this space of special polarizations was
constructed the quantum bundle and a flat connection on this bundle. Other constructions
of this connection were given by Faltings [3] and Ramadas [23].

In Ref. [26] we considered the quantizations of a symplectic torus(V/3,ω) defined by
the polarizations which are complex structures on the vector spaceV . The holomorphic line
bundles on a complex torus are characterized by their Appell–Humbert data; this nice prop-
erty allowed us to construct local trivializations for the bundle of quantizations. However,
an identification of the quantizations is not possible if we impose that this identification
should be “continuous” in a sense which will be explained below.

As it is well known, there are symplectic manifolds that do not admit Kähler structures; but
if the set of Kähler structures onM is non-empty, given such a structure, the consideration
of its deformations show that the space of Kähler structures is an “infinite-dimensional”
object. This fact leads to conjecture the impossibility of a consistent identification ofall
Kähler quantizations of(M,ω). Here we propose a frame to study this conjecture. This
proposal is in fact a development of Hitchin’s idea.

In the general case, when we consider all the Kähler polarizations on an arbitrary sym-
plectic manifold, the vector spacesQI will have different dimensions, so the desired iden-
tification of quantizations is impossible. If we restrict ourselves to the subspaceR consist-
ing of the complex structures for which the first Chern class of the corresponding Kähler
manifold is positive, then all the vector spacesQI have the same dimension. In this case
these vector spaces could be considered as fibers of a vector bundle∪{QJ |J ∈ R} overR.
But among all those possible identifications of theQJ ’s, which is the most appropriate? The
polarizations are introduced in order to reduce the space0(M,L) of the differentiable sec-
tions of the prequantum bundleL, since this space is too large to represent the phase space,
hence, taking into account that theQJ ’s are subspaces of0(M,L), a “good” identification
should be continuous in the following sense: givenτ ∈ QI , if τJ denotes the element ofQJ
identified withτ , the set{τJ } is a continuous family w.r.t. appropriate norms in0(M,L)
and inR. Such an identification would define a transport of the fibres of∪QJ along the
curves inR, and the “curvature” of this transport would vanish. We will analyse all the
possible transports of the fibres of∪QJ . These transports are determined by the differential
equation which they generate. That is, ifIt is a curve inR andτt ∈ QIt is identified with
τ , one will have

dτt
dt

= ζ(It , τt ),
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whereζ is a section ofL. The conditionτt ∈ QIt imposes restrictions toζ which permit us to
prove the plausible result that the curvature of any such transport does not vanish. This result
is, in fact, a no-go theorem for the continuous identification of the Kähler quantizations in
the sense explained above.

Another point we study is the relation between our transports and the Berry phase. For a
Lagrangian submanifold ofM which undergoes a cyclic evolution along an isodrast is de-
fined the corresponding Berry phase [27]. When the curveIt inR is obtained from a family
{ψt } of Hamiltonian symplectomorphisms acting onI , the sectionζ can be chosen in a natu-
ral way, and the holonomy of this transport along such a closed curve is essentially the Berry
phase of a loop of antiholomorphic integral submanifolds defined by the polarizationsIt .

The spaceK of Kähler structures on(M,ω) compatible withω is considered in Section
2. In particular, we characterize the tangent vectors toK.

The subspaceR ofK is introduced in Section 3. If the canonical bundle ofMI is negative,
then the Riemann–Roch theorem implies that dimH 0(LI ) is a topological invariant inde-
pendent ofI . Bearing this fact in mind, the spaceR is defined so that its elements determine
complex structures whose canonical bundles are negative, in this way all the vector spaces
QI have the same dimension, wheneverI ∈ R, and to rule out trivial cases we assume that
this dimension is different from zero.

The transport of vectors ofQI along curves inR is introduced in Section 4. The section
ζ of L which generates a transport must satisfy a condition of cohomological nature. The
existence of such sectionsζ is guaranteed by the vanishing of the cohomology group
H 0,1(LI ). There are infinitely many such transports; in fact the corresponding sectionsζ

belong to an affine space modelled onQI . A particularζ can be constructed using the Green
and the adjoint operators of∂̄I , the operator which defines the holomorphic structure ofLI .
Thisζ determines acanonicaltransport which preserves the inner product of spacesQJ . In
this section we also study some properties of the canonical transport along geodesics ofR.

In Section 5, we prove that canonical transport is not “flat” when dimM = 2n > 2.
As a consequence of this fact it can be proved that any other transport is also not flat. In
the infinite-dimensional space of small closed curves inR we actually show the existence
of curves such that the transports along them exhibits its non-vanishing curvature. Our
argument does not work ifn = 1 because the corresponding space of small closed curves
is not big enough for containing, for each transport, a curve along which this transport is
not flat. Whenn = 1,MI is a Riemann surface and the elements ofQI can be identified
with theta functions. We show that considering the quantizations ofM as spaces of theta
functions, it is not possible to define a continuous identification of them. The point here is
the impossibility of choosing a continuous family of characteristics [19] for the line bundles.
Using this fact, we proved in [26] an analogous negative result relative to identification of
the quantizations of a symplectic torus.

Section 6 is concerned with the transport along the curves generated by families of
symplectomorphisms. If{ψt } is a family of Hamiltonian symplectomorphisms withψ0 =
id, thenIt = ψt · I is a curve inR. In this case there is anaturalsolution to the equation for
ζ ; it is defined by means of the Hamiltonian vector fields. IfQ is an holomorphic integral
submanifold ofI , thenQt := ψt(Q) is an isodrastic deformation ofQ (see [27]), and it
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turns out that the natural translationτ|Q → τt |Qt is flat. Thus one has a flat “translation of
submanifolds” of the prequantum bundleL along isodrasts.

In Section 7, we check the natural solution for the transport obtained in Section 6 by
analysing the case when the symplectic manifold is a coadjoint orbitO of a semisimple Lie
groupG. For a fixedη ∈ O, a character3 of the subgroup of isotropyGη determines a
prequantum bundleL. By means of a maximal torusT ⊂ Gη, one can define an invariant
polarizationI , and the elements ofQI (L) can be identified with functionsf onGC which
are equivariant w.r.t.3. If L′ is the prequantum bundle determined by the character3′

of Gaη defined from3 in a natural way, there is adirect identification ofQI (L) with
QI (L′), considering these spaces as sets of equivariant functions. The torusT̃ = aTa−1

defines the polarizatioñI onO, and we have the quantizationQ
Ĩ
(L′). There is also adirect

identification ofQI (L) with Q
Ĩ
(L′) in terms of equivariant functions. On the other hand,

givenA ∈ g, let ψt : O → O be the left multiplication by etA, andIt = ψt · I the
curve generated by the family of symplectomorphismsψt ; we prove that the identification
betweenQI andQIt given by the natural transport is precisely the composition of the
above isomorphismsQI (L) ' QIt (Lt ) ' QIt (L), whereLt is the prequantum bundle
determined by the character ofGetAη defined by3.

Weinstein [27] defined the Berry phase for a Lagrangian submanifold which undergoes a
cyclic evolution. In Section 8, we analyse the relation of our natural transport with the Berry
phase. A particular closed curve inR is It := ψt · I , whereψt is a family of Hamiltonian
symplectomorphisms withψ0 = ψ1 = id. If P is an antiholomorphic integral submanifold
of I , by means of the symplectomorphisms, one can define the loop of submanifoldsPt =
ψt(P ). On the other hand, we consider the natural transport alongIt , and withτ1 we denote
the transportedτ around this closed curve. Thenτ1(P1) = κτ(P ), withκ a complex number.
We prove that the class ofκ modulo the holonomy ofP is the Berry phase of the loop of
isodrastic submanifoldsPt .

In order to study the continuity of some constructions w.r.t. the complex structureI ,
it is necessary to have holomorphic coordinates onMI which depend continuously onI .
In Appendix A, we show the existence of such coordinates (Proposition A.2). Our proof
basically consists in checking the continuity of the steps which appear in the proof of the
Newlander–Nirenberg theorem. IfM andI were real analytic then theNewlander–Nirenberg
theorem could be deduced from Frobenius theorem [15, p. 321; 20, p. 126], and under this
stronger assumption it is easy to verify the said continuity. For the general case, we have
analysed the classical construction given by Kohn [17].

2. The space of Kähler polarizations

LetM be a connected, compact, symplecticC∞ manifold of dimension 2n, with sym-
plectic formω. An almost complex structure onM compatible withω is aC∞ sectionI of
the vector bundle End(TM) such that

I2 = −1, (2.1)
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ω(I., I.) = ω(., .), (2.2)

ω(., I.) is positive definite. (2.3)

If the elementI has no torsion, i.e.,

[IX, IY] − [X, Y ] − I [IX, Y ] − I [X, IY] = 0

for allX, Y vector fields onM, thenI is an integrable almost complex structure on(M,ω).
By K we denote the set of integrable almost complex structures onM compatible withω;
we assume thatK 6= ∅. The elements ofK are the Kähler polarizations of(M,ω).K can be
endowed with a structure differentiable which in terms of inverse limits of Hilbert spaces
(ILH) (see [21,22]) is a strong analytic ILH-manifold modelled on an appropriate Sobolev
chain. In Ref. [4] there is a detailed exposition of this structure.

SinceK ⊂ C∞(End(TM)), a tangent vector toK is an element ofC∞(End(T cM)). If
I (t) is a curve inK with I (0) = I , which defines the tangent vectorC = İ (0) ∈ TIK, the
condition(I (t))2 = −1 implies

IC + CI = 0. (2.4)

From the condition (2.2) applied toI (t) we deduce

ω(I., C.)+ ω(C., I.) = 0. (2.5)

If {zi} are local complex coordinates onMI , we putej := ∂/∂zj ; by (2.4)

C =
∑
aj

Ba
j̄
ea ⊗ ēj +

∑
aj

Bāj ēa ⊗ ej .

The vector

vj (t) := ej + t

2i

∑
a

Bāj ēa

satisfies(I + tC)vj (t) = ivj (t)+ O(t2), sovj (t) is up to ordert2 an i-eigenvector ofI (t).
Similarly,

ēj − t

2i

∑
a

Ba
j̄
ea + O(t2)

is an−i-eigenvector ofI (t). ThereforeBa
j̄

= Bāj , andC is determined by the elementB

of �0,1(M,TMI ):

B =
∑
aj

Ba
j̄
ea ⊗ ēj . (2.6)

Taking into account (2.5), we deduce∑
a

Ba
j̄
ωak̄ =

∑
a

Ba
k̄
ωaj̄ ,
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henceB must have the form

B =
∑

F irωrj̄ ei ⊗ ēj , (2.7)

where
∑
F ir ei ⊗ er is aC∞ symmetric tensor.

The integrability condition forI (t) equivalent to [̄vj (t), v̄k(t)] is (up to ordert2) a field
of type (0,1) w.r.t.I (t).

[v̄j (t), v̄k(t)] = 1
2it
∑
a

(
∂Ba

k̄

∂z̄j
−
∂Ba

j̄

∂z̄k

)
ea + O(t2)

= 1
2it
∑
a

(
∂Ba

k̄

∂z̄j
−
∂Ba

j̄

∂z̄k

)
va(t)+ O(t2).

Thus the integrability condition is equivalent to

0 = ∂̄B ∈ �0,2(M,TMI ). (2.8)

This condition and̄∂ω = 0 implies

∑ ∂F ir

∂z̄l
ωrj̄ dz̄l ∧ dz̄j = 0. (2.9)

Since the tangent vectors toK at I are tensor fields onMI of type (2.6), using the Kähler
metricgI := ω(., I.), one can define an inner product on the tangent spaceTI (K) by the
relation

(B, B ′) :=
∫
M

gI (B,B
′) ωn, (2.10)

and this product defines a weak Hermitian structure onK [2,4].

3. Quantization

Let us suppose thatω satisfies the integrability condition [29, p. 158]. That is,ω defines
a cohomology class inH 2(M,R) which belongs to the image ofH 2(M,Z) in H 2(M,R).
Then there exists a smooth Hermitian line bundle onM whose first Chern class is [ω], and
on this bundle is defined a connection compatible with the Hermitian structure and whose
curvature is−2π iω. The bundle and the connection are not uniquely determined byω.
The family of all possible pairs (line bundle, connection) can be labelled by the elements
of H 1(M,U(1)) [29, p. 161]. From now on, unless otherwise indicated, we suppose that
a “prequantum bundle”L and a connectionD have been fixed, and from them we will
construct the quantizations of(M,ω).

GivenI ∈ K, we have the corresponding decomposition in the sheaf of germs of smooth
1-forms with coefficients inL

A1(MI , L) = A1,0(MI , L)⊕A0,1(MI , L).
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The operator1
2(1 + iI ) extended toA1(MI , L) is a projector onA0,1(MI , L). We

set

D′′
I := 1

2(1 + iI )D : A0(MI , L) → A0,1(MI , L).

A smooth sectionτ of L on U is said to beI -holomorphic if D′′
I τ = 0 on U

[10].
Sinceω(I., I.) = ω(., .), ω as 2-form onMI is of type (1,1). Consequently, ifη =

η1,0 + η0,1 is the connection form ofD w.r.t. a local sectionσ of L, then ∂̄η0,1 = 0.
By Dolbeault lemma there are local solutions to∂̄f + f η0,1 = 0, and thusf σ is a local
I -holomorphic section ofL. These sections define an holomorphic structure onL, and the
corresponding holomorphic line bundle is denoted byLI . The spaceQI := H 0(MI ,O(LI ))
of global sections ofLI is the quantization of(M,ω) w.r.t. the “Kähler polarization”I
[10].

The formω is a positive (1,1)-form onMI , since forv ∈ TMI

−iω(v, v̄) = −iω(Y − iIY, Y + iIY) = 2ω(Y, IY) ≥ 0.

Hence,LI is a positive line bundle.
If we denote by DetI the canonical bundle ofMI , then

c1(DetI ) = c1

(
n∧
T ∗1,0(MI )

)
= c1(T

∗1,0(MI )) = −c1(MI )

see [9, p. 64]. On the other hand,c1(MI ) can be represented by the (1,1)-form(
i

2π

)
∂̄∂ log(det(gIj k̄))

see [13, p. 26]. By Proposition A.2 we can conclude that ifc1(DetI ⊗L∗
I ) is negative, then

c1(DetJ ⊗ L∗
J ) is also negative for allJ in a neighbourhood ofI in K.

If DetI ⊗L∗
I is negative,Hq(MI ,O(DetI ⊗L∗

I )) = 0 forq < n by the Kodaira–Nakano
vanishing theorem, and by the Serre duality [6, p. 153],

Hr(MI ,O(LI )) = 0 for r > 0, (3.1)

and finally the Riemann–Roch theorem implies dimH 0(MI , LI ) = χ(LI ), whereχ(LI )
is the Euler characteristic of the line bundleLI . Sinceχ(LI ) is a topological invariant,
dimH 0(MI , LI ) is independent of the complex structure. We shall assume thatχ :=
χ(LI ) > 0.

Therefore, in order to get vector spacesQI whose dimension is independent ofI , we will
consider only those complex structures such that the first Chern class of the corresponding
complex manifoldMI is positive; and we denote byR the subset ofK consisting of these
complex structures. One has the following proposition.

Proposition 1. dim(QI ) is independent ofI ∈ R.
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4. The canonical transport

We are interested in “continuous” identifications of theQI which take into account that
eachQI is a subspace of0(L) (the space of smooth sections ofL), as we have explained in
Section 1. The space∪{QI |I ∈ R} is a subbundle of the product bundleR×0(M,L) in a
generalsense (see [11, p. 11]), but we have not defined local trivializations on it. Evidently,
the application to∪{QI } of some properties which hold for the standard (locally trivial)
vector bundles can give rise to false conclusions. For instance, ifM is a torus, thenR is a
contractible space; but it is wrong to conclude from this fact that∪{QI } is trivial.

If It be a curve inR with I0 = I , we want to define a “transport”

τ ∈ QI ⊂ 0(L) → τt ∈ QIt ⊂ 0(L),

which is continuous when in0(L) is considered a suitable Solobev norm.
By the continuity we are assuming, the elementτt ∈ QIt “identified” with τ must satisfy

τt = τ + tζ + O(t2) ∈ 0(L), (4.1)

whereζ is a section of the Hermitian bundleL, and O(t2) is relative to an appropriate Sobolev
norm‖ ‖l . The conditionτt ∈ QIt imposes restrictions toζ . Since1

2(1+ iIt )D(τt ) = 0 for
all t in a neighbourhood of 0∈ R, we have

1
2iİ (0)(Dτ)+ 1

2(1 + iI )(Dζ) = 0.

Henceζ , that depends onI, İ (0) andτ , must satisfy

D′′
I ζ(I, İ , τ ) = −1

2iİ (D′
I τ ). (4.2)

In Proposition 2 we prove that this equation has solutions. The proof is based on two
facts: the compatibility ofI (t) with ω, which implies (2.7); and the definition ofR, that in
turn impliesH 0,1(LI ) = 0 for I ∈ R.

Proposition 2. Given a curveIt inR andτ ∈ QI , there exist solutionsζ(I, İ , τ ) to (4.2).

Proof. In a local trivializationD′
I τ = σ ⊗ η, whereσ is a local section of the prequantum

bundleL, andη is a(1,0)-form ofMI . In the following, we delete the subscript inD′′ and
in D′. SinceD′′τ = 0,

[D′′,D′]τ = D′′σ ⊗ η + σ ⊗ ∂̄η.

If zi are holomorphic coordinates forMI andη = ∑
ηi dzi , then the last equation implies

2π iωil̄τ = (∇l̄σ )ηi + σ
∂ηi

∂z̄l
. (4.3)

On the other hand, the tangent vectorB := İ (0) has the form (2.6), andB(D′τ) = σ ⊗ β,
with β = ∑

Ba
j̄
ηa dz̄j . By (2.8) one has

∂̄β =
∑

Ba
j̄

∂ηa

∂z̄l
dz̄l ∧ dz̄j .



A. Viña / Journal of Geometry and Physics 36 (2000) 223–250 231

Using (4.3) and (2.7), we obtain

D′′(B(D′τ)) = D′′σ ∧ β + σ ⊗ ∂̄β = τ ⊗ 2π i
∑

ωal̄F
arωrj̄ dz̄l ∧ dz̄j .

Then, sinceF is symmetric,

D′′(B(D′τ)) = 0, (4.4)

soB(D′τ) ∈ �0,1(M,LI ) is closed. On the other hand, by (3.1),H 0,1(LI ) = 0; hence
B(D′τ) is exact, and there exist solutionsζ to Eq. (4.2). �

Eq. (4.2) does not have a unique solution, however the following heuristic remarks lead
to a particular solution. First of all, it seems reasonable to impose the conservation of
the Hermitian metrics by the transport. That is, the Hermitian structure〈 , 〉 onL induces
Hermitian metrics on theLJ , then we impose〈τt , τt 〉 = 〈τ, τ 〉. Hence, follows that

〈τ, ζ 〉 + 〈ζ, τ 〉 = 0.

SinceD′′
I τ = 0, this condition holds ifζ is coexact, i.e., if

ζ = δI ρ, (4.5)

whereδI is the adjoint operator ofD′′
I . If we consider the Hodge decomposition forζ , and

denote byhI (ζ ) its harmonic part, thenhI (ζ ) ∈ QI , and so the harmonic component ofζ
is “redundant” in the transport of elements ofQI

τ ∈ QI → τ + tζ + O(t2) ∈ QIt .

We denote byGI the Green operator ofD′′
I ; if hI (ζ ) = 0, by (4.5) the Hodge decomposition

of ζ (see [16] or [28]) is simplyζ = δIGID
′′
I ζ , and asζ must satisfy (4.2), we get the

following solution for this equation:

ξ(I, İ , τ ) := −1
2iδIGI İ (D

′
I τ ). (4.6)

This particular solution to (4.2) can be obtained in a canonical way. Letψ := −1
2iB(D′

I τ ),
by (4.4)ψ is closed. AsH 1(M,LI ) = 0,ψ is exact. Then by the Hodge decomposition of
forms we can writeψ = D′′

I δIGIψ , therefore the sectionξ given by (4.6) is a solution of
(4.2). Furthermore, any other solution is

ζ(I, İ , τ ) = ξ(I, İ , τ )+ h(I, İ , τ )

with h ∈ 0(L) andD′′
I h = 0. That is, the set of solutions to (4.2) is an affine space modelled

onQI .
In particular,ξ(I, ., .) defines a transport of elements ofQI along curves inR by the

equation

dτt
dt

= ξ(It , İt , τt ). (4.7)
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Remarks.
1. Since the Hermitian structure onLI is given by that of the prequantum bundle, and

the Kähler metric onMI is determined by I andω, the solution(4.6) to Eq. (4.2)
has been canonically chosen. So we call the transport defined by(4.7) the canonical
transport.

2. SinceIt is a smooth curve inR the tensor fields{Ft }t , defined fromBt := İt according to
(2.7),form a continuous family in the corresponding space. By(4.1),{τt }t is a continuous
family w.r.t. appropriate Sobolev norms in0(L). Hence{ξ(It , Bt , τt )}t defined by(4.6)
is a continuous family as a consequence of PropositionA.2.

3. If τ, σ ∈ QI , we have

〈τt , σt 〉 = 〈τ, σ 〉 + t (〈ξ(I, B, τ), σ 〉 + 〈τ, ξ(I, B, σ )〉)+ O(t2).

By (4.6),

〈ξ(I, B, τ), σ 〉 = −1
2i〈δG(B(D′τ)), σ 〉 = −1

2i〈G(B(D′τ)),0〉 = 0,

and similarly〈τ, ξ(I, B, σ )〉 = 0.Hence this transport conserves the product of sections.

By D is denoted the group consisting of symplectic diffeomorphisms of(M,ω). The
differential structure of this infinite-dimensional group has been studied in Ref. [4]. The
action ofD onK is defined as follows: givenI ∈ K andφ ∈ D, thenφ ·I := φ−1∗Iφ∗ (here
the complex structures are considered as endomorphisms ofT ∗M). We will see that this
action permit to identify in a natural way quantizations of(M,ω) obtained from different
prequantum bundles.

Letφ ∈ D, if σ is a section of the prequantum bundleL, φ · σ := σ ◦ φ−1 is a section of
φ · L, the pull-back ofL by φ−1. We shall denote byφ ·D the connection inφ · L defined
by

((φ ·D)(φ · τ))(x) = φ∗−1
x (Dτ)(φ−1(x)) ∈ T ∗

x M ⊗ Lφ−1(x).

ByP we denote the set of prequantum bundles(L,D) on(M,ω). The symplectomorphism
φ determines a bijective map

(L,D) ∈ P → (φ · L, φ ·D) ∈ P.

The quantization defined from the prequantum bundle(L,D) by the Kähler polarizationI
is denoted byQI (L,D), i.e.,

QI (L,D) = {τ ∈ 0(L)|(1 + iI )Dτ = 0}.

If Ĩ = φ · I , L̃ = φ · L, D̃ = φ ·D for τ ∈ QI (L,D) the sectioñτ := φ · τ satisfies

(1 + iĨ )D̃(τ̃ )|x = φ∗−1
x (1 + iIφ−1(x))φ

∗
xφ

∗−1
x ((Dτ)(φ−1(x))) = 0.

Henceτ ∈ QI (L,D) → τ̃ ∈ Q
Ĩ
(L̃, D̃) is an isomorphism.
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For I ∈ R we constructQI the direct sum of theI -quantizations of the different pre-
quantum bundles,

QI = ⊕
P
QI (L,D),

and forĨ = φ · I , there is the corresponding induced isomorphismφ∗
I : QI ' Q

Ĩ
.

If we consider the exponential map defined by the inner product (2.10) and fix a normal
neighbourhoodU inR centred atI (see [2]), each point inU can be jointed toI with only
one geodesic inU . By means of the canonical transport along the geodesics we can identify
in a consistent wayQJ (L,D) withQI (L,D) for all J ∈ U . Let I, Ĩ be equivalent Kähler
polarizations,φ · I = Ĩ . If β : V ⊂ M → C

n is a chart forMI , which defines holomorphic
coordinates(zj ), thenβ̃ = β ◦ φ−1 is a holomorphic chart forM

Ĩ
and its coordinates will

be denoted by(z̃j ). Moreover,τ ◦ β−1 = τ̃ ◦ β̃−1 for τ ∈ QI andτ̃ = φ · τ . Thus, ifσ is
a local frame forL andτ = f (zj )σ , thenφ · τ = f (z̃j )φ · σ , i.e., the expression ofτ in
the coordinates(zj ) is the same as this one ofτ̃ in the coordinates(z̃j ).

Proposition 3 states the invariance under symplectic diffeomorphisms of the canonical
transport along geodesics.

Proposition 3. Let It be a geodesic inR with I0 = I , thenĨt = φ · It is also a geodesic.
Moreover, if τ ∈ QI (L,D) andτt is the transport ofτ alongIt , thenφ · τt is the transport
of φ · τ ∈ Q

Ĩ
(φ · L, φ ·D) along Ĩt .

Proof. Since (2.10) is invariant under symplectic diffeomorphisms, ifIt is a geodesic in
R, thenĨt is geodesic too. Moreover,̃Bt := d/dt (φ · It ) = φ∗−1Btφ

∗ with Bt = dIt /dt ;
hence if(zjt )j are complex coordinates forMIt the functional dependence ofBt w.r.t. (zjt )j
is the same as this one ofB̃t w.r.t.(z̃jt )j . By (4.6),ξ(It , Bt , τt ) andξ(Ĩt , B̃t , φ ·τt ) expressed

in coordinates(zjt ) and(z̃jt ) have the same functional dependence. Therefore ifτt is the
solution to Eq. (4.7) alongIt , thenφ · τt is the solution to the transport alongĨt , i.e.,φ · τt
is the transported ofφ · τ alongĨt . �

If we denote byFI (t) the isomorphism betweenQI andQIt determined by the canonical
transport along the geodesic, then Proposition 3 asserts thatφ∗

It
FI (t) = F

Ĩ
(t)φ∗

I .

5. A no-go theorem

First we will prove the non-flatness of the canonical transport when dimM > 2.

Proposition 4. Assumingχ > 0, if dimension of M is greater than2, the transport defined
by ξ is not flat.

Proof. Let {It } be a “small” closed curve inR, i.e.,I0 = I1 =: I and‖Bt := İ (t)||l � 1
for all t ∈ [0,1], where‖ ‖l is an appropriate Sobolev norm. We define

ε := sup{‖Bt‖l |t ∈ [0,1]}.
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Let τ be an element ofQI with D′τ 6= 0. In order to study the transport defined by (4.7),
we set

D′′ = D′′
I , δ = δI , G = GI , δIt = δ + δ̃t , GIt = G+ G̃t ,

moreoverD′
It

= D′+ 1
2i(I−It )D. Asξ(It , İt , τt ) is of orderε, to determine the “curvature”

of the transport (4.7), we first obtain the solution of the “approximate” equation

dσt
dt

= −1
2iδGBt (D

′τ), σ0 = τ,

and then we replace on the right-hand side of (4.7)τt by σt + O(ε2).
Now we assume thatIt satisfies

δGBt (D
′τ) = 0 (5.1)

for all t ∈ [0,1]. Under this hypothesisσt = τ and we obtain the following equation forτt :

dτt
dt

= −1
2i(δ + δ̃t )(G+ G̃t )Bt (D

′ + 1
2i(I − It )D)τ + O(ε3).

By (5.1) andD′′τ = 0, we concludeδGBt I (Dτ) = iδGBt (D′τ) = 0. So

dτt
dt

= −1
2iδ̃tGBt (D

′τ)− 1
2iδG̃tBt (D

′τ)− 1
4δGBt It (D

′τ)+ O(ε3).

We need Lemma 5 whose proof will be given at the end.

Lemma 5. The termδGBt It (D′τ) is of orderε3.

By Lemma 5,

τ(1)− τ = − i

2

∫ 1

0
δ̃tGBt (D

′τ)dt − i

2

∫ 1

0
δG̃tBt (D

′τ)dt + O(ε3).

We putαt := Bt(D
′τ), soδtGtαt = (δ̃tG+ δG̃t )αt + O(ε3).

τ (1)− τ = − i

2

∫ 1

0
(δtGtαt )dt + O(ε3) = −1

2iδuGuαu + O(ε3)

with u ∈ [0,1]. Therefore, in general,τ(1) 6= τ . �

Proof of Lemma 5.

D′τ = ρ
1,0
t + ρ

0,1
t ∈ �1,0(M,LIt )⊕�0,1(M,LIt ),

whereρ0,1
t = −1

2i(−I + It )(D
′τ), and soρ0,1

t is of orderε. Similarly,

αt = α
0,1
t + α

1,0
t ,

and sinceB(D′τ) ∈ �0,1(M,LI ) and O(‖Bt‖) = ε, then

O(‖α0,1
t ‖) = ε, O(‖α1,0

t ‖) = ε2.
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Next we decompose

α
1,0
t = β

1,0
t + β

0,1
t ∈ �1,0(M,LI )⊕�0,1(M,LI ).

The orders ofβ1,0
t andβ0,1

t areε2 andε3, respectively. We have an analogous decomposition
α

0,1
t = γ

1,0
t + γ

0,1
t .

On the other hand, by (5.1)δG(αt ) vanishes, hence so do its component in�0,1(M,LI ),
i.e.,

δGβ
0,1
t + δGγ

0,1
t = 0. (5.2)

Taking into account thatItBt = −BtIt and (5.2),

δGBt It (D
′τ) = iδG(α0,1

t − α
1,0
t ) = iGδ(γ 0,1

t − β
0,1
t ) = −2iGδ(β0,1

t ).

Thus,δGBt It (D′τ) is of orderε3. �

Remark. Differentiating condition(5.1)at t = 0, we obtain thatδB(D′τ) ∈ �0(M,LI )

is harmonic. FromD′′δB(D′τ) = 0, one deduces thatδB(D′τ) = 0. Then by(4.4), the
(0,1)-formB(D′τ) ∈ �0,1(M,LI ) is harmonic, and by(3.1)it vanishes. With the notations
of Proposition2, the conditionB(D′τ) = 0 is expressed in local coordinates:

σ ⊗
∑

F irωrj̄ ηi dz̄j = 0.

Therefore, assumption (5.1) onIt implies this linear condition on the12n(n+ 1) functions
F ir . Forn = 1 there is only one function, so in generalB(D′τ) = 0 impliesB = 0.

If n > 1, condition (5.1) is satisfied by an “infinite-dimensional” familyF of “small”
closed curves inR, and for a generic curve inF , the transport defined by (4.7) is not flat.
Note that in this case there is no finite-dimensional subspace ofTI (R) containing the set
{İ (0)|{It } ∈ F}.

We next analyse the transport defined by a general solutionζ = ξ + h of (4.2) when
n > 1. We recall thath(I, İ , τ ) ∈ QI . Let us suppose that we can choose a continuous
family

{h(I, B, ρ)|B ∈ TI (R), ρ ∈ QI }.
As the right-hand side of (4.2) andξ are linear inB andτ , so ish. WhenB runs over
TI (R) andρ runs overQI , thenh(I, B, ρ) varies in the finite-dimensional vector space
QI . For eachτ ∈ QI , with D′τ 6= 0 we have a linear maph(I, ., τ ) : TI (R) → QI , and
codim Ker(h(I, ., τ )) ≤ dimQI = χ . Hence, there exists a subspaceB of TI (R) with
codimB < ∞, such thath(I, B, τ) = 0 for all B ∈ B. We conclude that for a generic
curve inR the transports ofτ defined byξ and byζ = ξ + h along this curve are equal.
By Proposition 4, we can state the following no-go theorem for a continuous identification
of Kähler quantizations of(M,ω).

Theorem 6. If χ > 0 anddimM > 2, the transport defined by any solution of Eq.(4.2) is
not flat.
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Next we study the case when dimM = 2. NowMI is a Riemann surface, and to exclude the
trivial case we suppose that its genusg is greater than 0. The elements ofQI = H 0(M,LI )

can be identified with “theta functions” on the universal covering spaceM̃ ofM. Therefore,
it is reasonable to impose to the identification the continuity of the family{τt }t in the space
of holomorphic functions onM̃.

More precisely, given a closed curveIt inR andτ ∈ QI , we pose the following question:
is it possible to define a family{τt ∈ QIt } with τ0 = τ , and for eacht a theta functioñτt ,
associated withτt , so that{τ̃t }t is a continuous family of analytic functions oñM w.r.t. an
appropriate Sobolev norm?

We first summarize the well-known construction of the space of theta functions (for
a detailed exposition, see [8]). Fixed a marking onM at the pointp, one has a basis
A1, . . . , Ag, B1, . . . , Bg for H1(M,Z). For eachc ∈ Cg, one definesχc a character of the
covering translation group0 of M̃ by the relations

χc(Aj ) = 1, χc(Bj ) = e2π icj .

By λ, we denote a factor of automorphy of the divisorr · p, wherer is
∫
M
ω. Given a

holomorphic line bundleL′ overMI with Chern classr, L′ has a factor of automorphy
of the formχcλ; furthermorec is unique up to translation by elements of the lattice3 =
(Id, �)Z2g, where� is the standard period matrix associated to the fixed basis forH1(M,Z)

(see [8, Chapter II]). We callc a characteristic forL′, in accordance with the denomination
used in [19] in the caseg = 1. The spaceH 0(M,L′) can be identified with the spaceThc
of holomorphic functionsf on M̃ such that

f (T · z) = χc(T )λ(T , z)f (z)

for all z ∈ M̃ andT ∈ 0.
If I ∈ R, by Riemann–Roch theorem dimH 0(M,L′) = r + 1 − g. Then there exist

r + 1− g holomorphic functionsfj onCg × M̃ such that{fj (c, .)}j is a basis forThc (see
Theorem 7 in Section 7 of [8]). This basis gives rise in turn to a vector valued function

2 : Cg × M̃ → C
r+1−g,

that in [8] is called a generalized theta function of rankr + 1 − g.
If {It }t∈S1 is a closed curve inR, a consistent and continuous identification of theQIt

as spaces of theta functions implies the construction of a continuous family{ct }t∈S1 for the
respectiveLIt . We shall show that this is, in general, impossible.

The definition of a characteristicct for LIt involves the following steps:
1. LetL0

t be the bundle onMIt defined by the divisorr · p; then the first Chern class of
LIt ⊗ (L0

t )
−1 is zero.

2. By the weak form of Abel’s theorem (see [8]),LIt ⊗ (L0
t )

−1 has a factor of automorphy
ρt which is constant oñM, i.e.,ρt ∈ Hom(0,C∗). It is straightforward to check that the
family {ρt }t depends continuously on the parametert . A proof of this fact wheng = 1
is given in Ref. [26].

3. One can writeρt (T ) = e2π iσt (T ), with σt ∈ Hom(0,C), then a characteristicct for LIt
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is given by

ctj = σt (Bj )−
g∑
1

σt (Ai)�ij ,

i.e.,ct is determined byσt .
Thus, we have a continuous mapρ : S1×0 → C

∗ withρ(t, T ) = ρt (T ). ButS1×0 is not
simply connected, so in general it is not possible to define a continuous mapσ : S1×0 → C

such thatρ = e2π iσ . Therefore, we have the following proposition.

Proposition 7. If dimM = 2 and its genus is greater than0, there are closed curves{It } in
R for which it is impossible to define a continuous family{ct }t of characteristics for theLIt .

Under the hypotheses of Proposition 7, considering the Kähler quantizations ofM as
spaces of theta functions, it is impossible to define a consistent continuous identification of
them.

6. Transport along isodrasts

Let {ψt } be a family of Hamiltonian symplectomorphisms of(M,ω) generated by the
time-dependent Hamiltonianft . We assume thatψ0 = id, and denote byXt the vector
fields defined by

ιXt ω = −dft . (6.1)

Given the Kähler structureI ∈ R, one definesIt = ψt · I = (ψ−1
t )∗Iψ∗

t . The tangent
vectorİ (0) to It at t = 0 can be easily obtained recalling that dψt/dt = Xt ◦ ψt . In fact,

İ (0) = I

(
dψ∗

t

dt

)
t=0

−
(

dψ∗
t

dt

)
t=0

I = I dX0 − dX0I,

where dX0 is the 1-formTM-value obtained fromX0 by exterior differentiation. Ifza are
holomorphic coordinates onMI , andX0 = ∑

(Xa(∂/∂za)+Xā(∂/∂z̄a)), it is immediate
to check that

İ (0)(dza) = −2i
∑ ∂Xa

∂z̄c
dz̄c.

Similarly,

İ (0)(dz̄a) = 2i
∑ ∂Xā

∂zc
dzc,

henceİ (0) = −2i∂̄(X1,0
0 )+ 2i∂̄(X0,1

0 ). In general,

İ (t) = −2i∂̄t (X
1,0
t )+ 2i∂̄t (X

0,1
t ),

where∂̄t is the Dolbeault operator determined by the complex structureIt , andX1,0
t , X

0,1
t

are the components ofXt in the direct sumT 1,0(MIt )⊕ T 0,1(MIt ).
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Therefore,

−1
2iİ (t)(D′

t τt ) = −∂̄t (X1,0
t )(D′

t τt ). (6.2)

In a local trivilizationD′
t τt = σ ⊗ η with η (1,0)-form w.r.t.It andσ section ofL. A direct

calculation gives

(∂̄t (X
1,0
t ))(D′

t τt ) = σ ⊗ ∂̄t (η(Xt ))− σ ⊗
∑ ∂ηa

∂z̄
j
t

Xat dz̄jt , (6.3)

zat being holomorphic coordinates onMIt , X
a
t are the components ofXt w.r.t. these coor-

dinates, andη = ∑
ηa dzat . As in the proof of Proposition 2,

[D′′
t , D

′
t ]τt = D′′

t (σ ⊗ η) = D′′
t σ ⊗ η + σ ⊗ ∂̄t η.

If ω = ∑
ωtaj̄ dzat ∧ dz̄jt , we have

2π iωtaj̄ τt = (∇t j̄ σ )ηa + σ
∂ηa

∂z̄
j
t

.

Hence,

σ ⊗
∑

Xat
∂ηa

∂z̄j
dz̄j = 2π iτt ⊗ i

X
1,0
t
ω − η(Xt )D

′′σ,

so (6.2) can be written as

−1
2iİt (D

′
t τt ) = −σ ⊗ ∂̄t (η(Xt ))+ 2πτt ⊗ i

X
1,0
t
ω − η(Xt )(D

′′σ). (6.4)

On the other hand,

ζt := −2π iftτt −DXt τt (6.5)

satisfies

D′′
t ζt = 2π iτt ⊗ i

X
1,0
t
ω − η(Xt )D

′′
t σ − σ ⊗ ∂̄t (η(Xt )).

This expression coincides with (6.4). Thus, we have proved the following proposition.

Proposition 8. ζt := −2π iftτt − DXt τt is solution to(4.2) for the transport along the
curve, It = (ψ−1

t )∗Iψ∗
t , wheredψt/dt = Xt ◦ ψt , andiXt ω = −dft .

The solution to (4.2) defined in (6.5) will be called thenatural solution, and the cor-
responding transport the natural transport alongIt .

Remark. The family{ψt } determines uniquely the vector fieldsXt , but the functionft
is determined byXt up to an additive real constant. If we considerf ′

t = ft + ct , the
correspondingζ ′

t differs fromζt in a multiple ofτt . Hence, the transports between the
projective spacesPQI → PQIt induced byζt andζ ′

t are equal.

Let us consider two families{ψt } and{φε} of Hamiltonian symplectomorphisms with
ψ0 = φ0 = id, generated by the time-dependent Hamiltoniansft andgε , respectively.
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We putf := f0, g := g0, X := X0 andY := Y0, whereXt andYt are the vector fields
generated byft andgt , respectively. LetIt = ψt · I , and withτt we denote the transported
of τ ∈ Q alongIt , soτt = τ + t (−2π if τ − DXτ) + O(t2). For a fixed value|t | � 1
we putI ′ := It andτ ′ = τt ; now we consider the curveJ ′

ε = φε · I ′, the transported ofτ ′

alongJ ′
ε is τ ′ − ε(2π igτ ′ +DYτ

′)+ O(ε2), whose term of ordertε is

4π2i2gfτ + 2π i(gDXτ + Y (f )τ + fDY τ)+DYDXτ. (6.6)

If φε · (ψt · I ) = ψt · (φε · I ) we can construct a small closed curve in the spaceR and the
curvature of this transport is the difference between (6.6) and the expression obtained from
(6.6) by exchangingX with Y andf with g. That is,

2π i(Y (f )−X(g))τ + (DYDX −DXDY )τ = 2π iω(Y,X)τ +D[Y,X]τ. (6.7)

Therefore, the natural transport is not flat.
We will consider this non-flatness from another point of view. One can associate to

eachC∞ functionf onM a linear operator Of on the space0(L) defined by Of (σ ) =
−2π if σ −DXf σ . It is straightforward to check O{f,g} = Of ◦ Og − Og ◦ Of ; the Pois-
son bracket{f, g} is defined asω(Xf ,Xg), whereXf andXg are the Hamiltonian vector
fields associated tof andg, respectively. So one has a representation of the Lie algebra
C∞(M). On the other hand, in the algebra of linear operators on0(L), one can consider
the idealC consisting of the operators multiplication by a constant, this allows us to define
a representation of the algebra4H(M) of the Hamiltonian vector fields onM in the algebra
End(0(L))/C.

4H(M) → End(0(L))/C. (6.8)

4H(M) is the Lie algebra of the group Ham(M) of Hamiltonian symplectomorphisms.
There are obstructions of topological nature to extend representation (6.8) to a projective
representation

Ham(M) → PL(0(L))

of the group Ham(M). The fact that (6.7) does not vanish is a manifestation of these ob-
structions.

However, if we restrict the sectionsτt to the holomorphic submanifolds ofMIt , the natural
transport is flat. In fact, ifQ is a holomorphic integral submanifold of the Kähler polarization
I , thenQt = ψt(Q) is a holomorphic integral submanifold ofIt . If the vector fieldXt is of
type(0,1) onQt w.r.t. It , then the family{Qt } of Lagrangian submanifolds is an isodrast;
an isodrastic deformation ofQ [27]. Let τt be the transported ofτ by means of (6.5). One
can consider the transport of the restrictionsτ|Q → τt |Qt . If X, Y are of type(0,1) onQ,
then for allq ∈ Q, ω(X, Y )(q) = 0, sinceω is of type(1,1). Moreover, [X, Y ](q) is also
of type(0,1) by the integrability ofI , so(D[X,Y ]τ)(q) = 0, sinceD′′τ = 0. Hence (6.7)
vanishes atq. In summary, the following proposition is stated.

Proposition 9. The natural transportτ|Q → τt |Qt along an isodrast has curvature zero.
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7. Example: coadjoint orbits

In this section we analyse the natural transport when the symplectic manifold is a coadjoint
orbit of a semisimple Lie groupG. On a fixed orbit one can considerinvariantprequantiza-
tions and polarizations. The elements of the corresponding quantizations can be viewed as
spaces of equivariant holomorphic functions onGC. This fact allows adirect identification
between these particular quantizations of the orbit. We shall check that the identification
given by the natural transport and the direct one are equal.

We recall some properties about the coadjoint action of a Lie groupG on g∗, the dual
of its Lie algebra (for details see [12,18]). Giveng ∈ G andA ∈ g with gA, we denote
Adg(A); and forη ∈ g∗, (gη)(A) := η(g−1A). The invariant vector field ong∗ defined by
A is denoted withXA, i.e.,XA(η) is defined by the curve etAη. Through the isomorphism
Tηg

∗ ' g∗, one has

XA(η)(C) = η([C,A]) for everyC ∈ g. (7.1)

Givena ∈ G, we denote byla the diffeomorphism ofg∗ defined by the product ofa. As
a consequence of the invariance ofXA, one has the following proposition.

Proposition 10. (la)∗(XA(η)) = XaA(aη).

Proof. By the definitions and (7.1),

(la)∗(XAη)(C) = d

dt
(η((aetA)−1C))|t=0

= −η([A, a−1C]) = (aη)[C,aA] = XaA(aη)(C). �

We will denote byO the orbit ofη ∈ g∗ under the coadjoint action. OnO one defines
the 2-formω

ωµ(XA(µ),XC(µ)) = µ([A,C]).

This form satisfiesl∗aω = ω. Moreover forA ∈ g, one defineshA ∈ C∞(O) by the relation
hA(µ) = µ(A); and for this function holds the formula

iXAω = dhA. (7.2)

It is easy to prove thatω defines a symplectic structure onO.
The orbitO can be identified with the quotientG/Gη, whereGη is the subgroup of

isotropy ofη, whose Lie algebra is

gη = {A ∈ g|η([A,B]) = 0 for allB ∈ g}. (7.3)

On the other hand, ifη, η′ ∈ g∗ andη′ = aη with a ∈ G, then

Gη′ = aGηa
−1. (7.4)
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Invariant polarizations.If G is a compact semisimple Lie group andT a maximal torus,
we denote byh the Lie algebra ofT . By the standard theory about the structure of semisimple
Lie algebras (see [5,24]),

gC = hC ⊕
(

⊕
α∈R
gα

)
,

whereR is the corresponding set of roots, eachgα has dimension 1 and̄gα = g−α. If R+

is a system of positive roots, andEα is a basis forgα, then

g = h⊕
(

⊕
α∈R+

(RAα ⊕ RBα)
)

with Aα = i(Eα +E−α) andBα = Eα −E−α. We takeZα = [Bα,Aα]; the vectorZα ∈ h
is characterized byα(Zα) = 2i.

The definition of invariant polarizations forO follows a well-known process. Here we
recall those aspects that we shall need below (for details, see [29]). LetT be a maximal
torus inG such thatT ⊂ Gη, then forY ∈ gα, by (7.3),

0 = η([Zα, Y ]) = α(Zα)η(Y ) = 2iη(Y ),

henceη extended togC vanishes on⊕gα. We defineR+
η = {α ∈ R|η(Zα) > 0}, and let us

assume thatR+ has been chosen so thatR+
η ⊂ R+. It is easy to prove that

gη = h⊕
(

⊕
α
(RAα ⊕ RBα)

)
,

whereα runs overR+ −R+
η . One defines

p = hC ⊕
(

⊕
α/∈R+

η

gα

)
, (7.5)

p is a Lie subalgebra ofgC which corresponds to a parabolic subgroupP ofGC. The tangent
spaceTηO of the orbitO at the pointη is isomorphic tog/gη, and from the above relations,
one deduces that

g/gη = ⊕
α∈R+

η

(RAα ⊕ RBα).

Then

T Cη O = ⊕
α∈R+

η

(gα ⊕ ḡα),

and there is an invariant almost complex structure onO in which the vectorsXC(µ) with
C in ⊕α∈R+

η
gα span the spaceT 1,0

µ O. Since

n := ⊕
α∈R+

η

gα
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is a subalgebra ofgC, this almost complex structure is in fact integrable. The corresponding
endomorphismI of TηO is given byI (Aα) = −Bα, I (Bα) = Aα. This complex structure
is also compatible with the symplectic formω.

If we choose another maximal torusT̃ , it is conjugate withT , T̃ = aTa−1. By (7.4),T̃
is contained inGaη. We denote bỹR the set of roots relative tõT . Ada is an isomorphism
betweenh and h̃ := Lie(T̃ ), and if α ∈ R, then α̃ := α ◦ Ada−1 is an element ofR̃;
moreover the root spacesgα andgα̃ are related by Ada , i.e.,

gα̃ = Ada(gα). (7.6)

The torusT̃ allows us to define a new complex structure onO in which the corresponding
space of(1,0) vectors atµ ∈ O, sayT̃ 1,0

µ O, is the space spanned byXC(µ), with C ∈
⊕α̃∈R+

aη
gα̃. By Proposition 10 and (7.6),(la)∗ appliesT 1,0

η O in T̃ 1,0
aη O. Hence, we have the

following proposition.

Proposition 11. The invariant complex structure onO determined by the maximal torus
aTa−1 is Ĩ := la∗ ◦ I ◦ l−1

a∗ , where I is the complex structure defined by T.

Quantization ofO. The orbitO of η possesses aG-invariant prequantization iff the linear
functional

ρη : C ∈ gη → 2π iη(C) ∈ √−1R

is integral, in the sense that there is a character3η : Gη → U(1) whose derivative is
ρη (see [18]). Henceforth, we assume thatρη is integral. The corresponding prequantum
bundleL ≡ Lλ, considered as a bundle onG/Gη, is precisely

L = G×3 C = (G× C)/ ∼
with (g, z) ∼ (gb−1,3(b)z) for b ∈ Gη. As it is well known a sectionσ of L determines
a3-equivariant functionf : G → C, i.e., the functionf satisfies

f (gb) = 3(b−1)f (g) for all b ∈ Gη. (7.7)

We denote byL× the principal bundle associated toL, i.e.,L× = L − {zero section}.
L× is a principalC× bundle onO, whereC× is the multiplicative group of non-zero
complex numbers. The sectionσ of L defines a functionσ] : L× → C by the relation
σ(π(y)) = σ](y) · y for y ∈ L×. One has

f (g) = σ]([g, z])z. (7.8)

On L×, there exists a natural connectionα whose construction is detailed in Ref. [18,
p. 198]. We recall here the basic properties ofα. The groupH = G×C× acts transitively
onL× by means of the obvious action. The subgroup of isotropy ofu = [e,1] ∈ L× is
Hu = {(b,3(b−1))|b ∈ Gη}, and its Lie algebra

hu = {(B,−2π iη(B))|B ∈ gη} ⊂ g⊕ C.
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HenceTu(L×) ' (g ⊕ C)/hu. If d ∈ HomC(C,C) is defined byd(z) = (1/2π i)z, then
(η, d) vanishes onhu and determines an elementαu ∈ T ∗

u (L
×). The connectionα is the

H -invariant 1-form onL× determined byαu.
GivenX is a vector field onO, byX] we denote the horizontal lift ofX toL×. From the

definition of covariant derivative, one has (see [14, p. 115])

(DXσ)
] = X](σ ]). (7.9)

If η′ = aη,by (7.3), the character3determines a character3′ ofGη′ putting3′(aba−1) =
3(b), and the derivative of3′ is the correspondingρη′ . One can define the respective pre-
quantum bundleL′ ≡ L3′ onO ' G/Gη′ . The identity map ofO gives rise to

φ : gGη′ ∈ G/Gη′ → gaGη ∈ G/Gη.
On the other hand, the map8 : [g, z] ∈ L′ → [ga, z] ∈ L is a well-defined bundle map that
coversφ. The isomorphism8 allows us to define a direct correspondence between sections
of L and sections ofL′: for σ section ofL, let σ ′ be the section ofL′ determined by

8 ◦ σ ′ = σ ◦ φ. (7.10)

Denoting byf andf ′ the respective equivariant functions, it is straightforward to prove
thatf ′(g) = f (ga), i.e.,

f ′ = f ◦Ra (7.11)

withRa the right multiplication bya in G.
To quantizeO we can start with the prequantum bundleL = L3, the choice of the

maximal torusT ⊂ Gη permits us to define a complex structureI inO as we explained. The
quantizationQI ≡ QI (L) ofO obtained using this polarization is the space of holomorphic
sections of the line bundleLI that we will define next. First of all, the character3 can be
extended trivially to the parabolic subgroupP , sinceP is a semidirect product ofTC and a
nilpotent subgroup ofGC (see (7.5)). Then

LI = GC ×3 C,

in other words,LI is the line bundle associated to the principalP -bundleGC → GC/P

through3. The holomorphic sections ofLI can be identified with the holomorphic3-
equivariant functions onGC.

From the prequantum bundleL′ = L3′ , by means of the complex structureI onO, one
can construct the corresponding quantizationQI (L′). The mapφ considered as a map from
O toO is the identity, hence it is trivially holomorphic w.r.t.I . Therefore, forτ ∈ H 0(LI ),
the correspondingτ ′ defined according to (7.10) is also holomorphic. In this way, one has
a direct identification betweenQI (L) andQI (L′) which in terms of equivariant functions
is given by (7.11).

Now we compare the quantizationsQI (L) andQ
Ĩ
(L′), whereĨ is the complex structure

onO defined by the maximal torus̃T = aTa−1. By Proposition 11, the mapla : (O, I ) →
(O, Ĩ ) is holomorphic, andla induces the mapping

ψ : gGη′ ∈ G/Gη′ → a−1ga ∈ G/Gη.
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On the other hand, the bundle mapping9 : [g, z] ∈ L′ → [a−1ga, z] ∈ L coversψ . The
section ofL′ “pull-back” of τ ∈ H 0(LI ) byψ is denoted bỹτ , i.e.,9 ◦ τ̃ = τ ◦ψ . Sinceτ
is I -holomorphic,τ̃ is Ĩ -holomorphic because of the holomorphy ofψ as mentioned above.
Hence we have got a direct identificationQI (L) ' Q

Ĩ
(L′), which in terms of equivariant

functions can be expressed as

f ∈ QI (L) → f̃ ≡ f ◦ La−1 ◦Ra ∈ Q
Ĩ
(L′), (7.12)

whereLa−1 is the left multiplication bya−1.
The parallel transport. Let us consider the diffeomorphismψt : µ ∈ O → etAµ ∈ O

withA ∈ g. This family{ψt } determines the vector fieldXA. By Proposition 11 the complex
structureIt := ψt ·I is the one defined by the torus etA T e−tA. By (7.2),ζ = 2π ihAτ−DXAτ
is the natural solution to the transport ofτ alongIt . That is, the transported ofτ satisfies

τt = τ + t (−DXAτ + 2π ihAτ)+ O(t2) ∈ QIt (L). (7.13)

If f is the equivariant function associated toτ , we shall determine the equivariant function
associated toτt . By (7.8) and (7.9), it will be necessary to determine the horizontal liftX

]
A

of XA. The vectorXA(gη) is defined by the curve{etA gη} in O. A lift of this curve at the
point [gb, z] ∈ π−1(gη), whereb ∈ Gη, is the curver(t) := [etA gb, zt ] with zt = z etx

andx ∈ C.

ṙ(0) = [RA(gb), x] ∈ T[gb,z]L
×,

whereRA(gb) ∈ Tgb(G) is the value atgbof the right invariant vector field inG determined
byA ∈ g. By the definition ofα and taking into account thatb ∈ Gη,

α(ṙ(0)) = η(Adg−1(A))+ 1

2π i
x.

So ṙ(0) is the horizontal lift ofXA(gη) if

x = −2π iη(Adg−1A), (7.14)

i.e.,

X
]
A(gb) = [RA(gb)− 2π iη(Adg−1A)] ∈ TgbL

×.

The action ofX]A on τ ] is

X
]
A(gb)(τ ]) = d

dt
(τ ][etAgb, zetx])|t=0

with x given by (7.14). Using (7.8),

X
]
A(gb)(τ ]) = d

dt

(
f (etA gb)

z etx

)∣∣∣∣
t=0

= RA(gb)(f ) · z− f (gb)zx

z2
.

Then, by (7.9), the3-equivariant function associated toDXAτ is

h(gb) = RA(gb)(f )+ 2π iη(Adg−1A)f (gb). (7.15)



A. Viña / Journal of Geometry and Physics 36 (2000) 223–250 245

On the other hand, the section 2π ihAτ corresponds to the3-equivariant function 2π iλAf
with λA(g) = hA(gη) = η(Adg−1A). Consequently, to the right-hand side of (7.13) cor-
responds the function

f − tRA(f )+ O(t2). (7.16)

AsRA(g) is defined by the curve{etAg ≡ LetA(g)}t , (7.16) is the expansion off ◦ Le−tA.
In summary, (7.12) gives the direct identificationf ∈ QI (L) → f̃t = f ◦L

a−1
t

◦Rat ∈
QIt (L3t ), whereat = etA and3t(atba−1

t ) = 3(b). Using (7.11) one gets the direct
identificationh ∈ QIt (L) → h ◦Rat ∈ QIt (L3t ). By means of the natural transport we
have obtained the identificationf ∈ QI (L) → f ◦ L

a−1
t

+ O(t2) ∈ QIt (L). Hence, the
diagram

QI (L) → QIt (L)
↘ ↙

QIt (L3t )

is commutative up to ordert2.

Proposition 12. The identificationQI (L) ' QIt (L) given by the natural transport is
compatible with the direct identificationsQI (L) ' QIt (L3t ) andQIt (L) ' QIt (L3t ).

8. Relation with Berry phase

For an antiholomorphic submanifoldP (relative toI ) that undergoes the cyclic evolution
Pt = ψt(P ), the corresponding Berry phase is defined [27]. Here we study the relation
between this phase and the holonomy of the natural transportτ|P → τt |Pt along the curve
It = ψt · I .

The connection on theC×-principal bundleL× = L− {zero section}, associated to the
prequantum bundleL, will be denoted byα. Givenc ∈ C, the vertical vector field onL×

generated byc will be denoted byWc. That is,Wc(q) is the vector defined by the curve in
L× given byqe2π ict.

Remark. LetV be aC-vector space; if we considerV as a manifold forc ∈ C andv ∈ V ,
the curve{e2π ictv} defines a vectorWc(v) ∈ TvV . Then from the natural isomorphism
TvV ' V , one obtains the following evident equality inTvV :

Wc(v) = 2π ic · v. (8.1)

If P is an antiholomorphic integral submanifold relative toI andτ ∈ QI , the condition
D′′τ = 0 impliesDvτ = 0 for all v ∈ TP. Soτ|P is a parallel section ofL|P ; consequently
if τ 6= 0, thenτ(p) 6= 0 for all p ∈ P andτ(P ) ⊂ L× is a Planckian submanifold [25] of
L× overP .

Lemma 13. If X ∈ TmP andτ ∈ QI , the vectorτ∗(X) ∈ TqL×, whereq = τ(m), satisfies
τ∗(X) = H(X)(q)+ (DXτ)(m) with H(X)(q) the horizontal lift of X at the point q.
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Proof. We setZ := τ∗(X) ∈ Tq(L×). LetZ1 andZ2 be the horizontal and vertical parts of
τ∗(X), respectively. We want to prove thatZ1 = H(X)(q) andZ2 = (DXτ)(m). Denoting
by π the projection from the bundle toM,

π∗(Z) = X = π∗(Z1)+ π∗(Z2) = π∗(Z1).

SinceZ1 is horizontal andπ∗(Z1) = X, it turns out thatZ1 is the horizontal lift ofX at the
pointq. On the other hand,Z2 = Wc(q) for somec ∈ C.

(DXτ)(m) = (τ ∗α)(X) · τ(m) = α(τ∗(X)) · q,
andα(τ∗X) = α(Z2) = α(Wc(q)) = 2π ic. Hence by the above remark(DXτ)(m) =
Wc(q) = Z2. �

Let {ψt } be a family of Hamiltonian symplectomorphisms of(M,ω) with ψ0 = id
generated by the time-dependent Hamiltonianft . By Proposition 8 the transport along
It := ψt · I has the natural solutionζ = −2π iftτt − DXt τt . If P is an antiholomorphic
integral submanifold ofI , thenψt(P ) =: Pt is also an antiholomorphic integral submanifold
of It . Assuming thatτ ∈ QI is different from 0,τt (Pt ) is a Planckian submanifold ofL×

onPt , τt being the transport ofτ alongIt by means of the natural transport.
Givenp ∈ P , one can consider inL× the following curve:

t → τt (ψt (p)).

Proposition 14. The tangent vector defined by{τt (ψt (p))}t at q = τu(ψu(p)) is

H(Xu)(q)+W−fu(π(q))(q).

Proof. For t in a small neighbourhood ofu, as

dτt
dt

= −2π iftτt −DXt τt ,

then

τt (ψt (p)) = τu(ψt (p))− (t − u)(2π ifu(ψt (p))τu(ψt (p))

+(DXuτu)(ψt (p)))+ O((t − u)2).

This curve defines att = u the following vector ofTqL×:

(τu)∗(Xu(s))− (2π ifu(s)τu(s)+ (DXuτu)(s)), (8.2)

wheres := ψu(p). Asτu(s) = q by Lemma 5,(τu)∗(Xu(s)) = H(Xu(s))(q)+(DXuτu)(s).
By (8.1), expression (8.2) is equal to

H(Xu(π(q)))(q)−Wfu(π(q))(q).

In short, the tangent vector atq defined by the curve considered isH(Xu)+W−fu . �
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Now let {ψt }t∈[0,1] be a closed smooth path in the group Ham(M) with ψ0 = ψ1 = id
generated by the differentiable family of Hamiltonians{ft }. Moreover, we assume that the
vector fieldXt is of type(1,0) on Pt . Thus, we have a curve{Pt } which is an isodrastic
deformation ofP ; an isodrastic loop of submanifolds{Pt } in fact. Givenτ ∈ QI , we call
the transportτ|P → τt |Pt the transport ofτ along the isodrastPt .

We recall some results of Weinstein about the Berry phase (for details see [27, p. 142]). Let
εt be a smooth density onPt such that

∫
Pt
ft εt = 0. Let{rt } be the family of isomorphisms

of (L×
|P , α) to (L×

|Pt , α) determined by{ft }, i.e., the isomorphisms generated by the vector
fields

H(Xt)+W−ft . (8.3)

The submanifoldr1(τ (P )) “differs” from τ(P ) by an elementθ ∈ C×, i.e.,

r1(τ (P )) = θτ(P ). (8.4)

If we denote by hol the holonomy onP defined by the connectionα,hol : π1(P ) → C
×,

and byγ : z ∈ C× → z|z|−1 ∈ U(1). Then the Berry phase of the family(Pt , εt ) of
weighted submanifolds is the class ofγ (θ) in the quotientU(1)/(Im(γ ◦ hol)). Up to here
the results are of Weinstein.

Theorem 15. The Berry phase of(Pt , εt ) is the class inU(1)/(Im(ϕ◦hol)) of the holonomy
of the natural transport along the isodrastic loopPt .

Proof. Givenp ∈ P , by Proposition 14 and (8.3) the curves inL×{τt (ψt (p)}and{rt (τ (p))}t
define the same vector field. As they take the same value fort = 0, it turns out that
rt (τ (p)) = τt (ψt (p)) for all p ∈ P ; hence the above complexθ in (8.4) is determined by

τ1(p) = θτ(p). (8.5)

The natural transport along the loopIt carriesτ ∈ QI to τ1. Sinceτ1|P andτ|P are parallel
w.r.t. the connectionα onL×, one has

τ1|P = κτ|P (8.6)

with κ ∈ C×, assumingP is connected. (Note thatκ is independent ofτ ∈ QI .) Hence
κ can be regarded as the holonomy of the natural transport along the isodrastic loop of
submanifoldsPt . From (8.5), we conclude thatθ = κ. �

Appendix A. Complex coordinates onMIMIMI

Given I ∈ K, we have the direct sum decompositionA = ⊕Ap,q of the space ofC∞

differential forms onM; and for fixedp we have the operators

∂̄j : Ap,j → Ap,j+1,

defined by∂̄j = πp,j+1d, whereπp,j+1 is the corresponding projector.
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On the other hand, the metricgI = ω(., I.) determines the respective Hodge?-operator.
We have also defined the inner product ofp-forms:

(ϕ′, ϕ) :=
∫
ϕ′ ∧ ?ϕ̄.

By δj we denote the adjoint of̄∂j , and1j is the corresponding Laplacian operator. The
integrability condition forI implies∂̄j ∂̄j−1 = 0, so we have the respective elliptic complex
{Ap,∗, ∂̄}, and the operatorsδ,1 and the Green’s operatorG defined by natural grading.

We now summarize the construction of a local holomorphic coordinate system forMI

achieved in Ref. [17]. Letx1, . . . , x2n be real coordinates on a neighbourhoodW of x ∈ M
with origin atx, such thatxi(W) ⊃ [−1,1] and(

∂

∂x2i

)
x

= Ix

(
∂

∂x2i−1

)
x

.

One defines the functionshki onW by

I

(
∂

∂xi

)
=
∑
k

hki

(
∂

∂xi

)
. (A.1)

LetB be the unit ball inR2n. By Bt we denote the almost complex manifold whose under-
lying differentiable manifold isB, and whose almost complex structureĴt is given by

Ĵt

(
∂

∂xi

)
:=
∑
k

hki (tx1, . . . , tx2n)

(
∂

∂xk

)
(A.2)

for t ∈ [0,1] (here thexi ’s are the usual coordinates onR2n). We denote byδt ,Gt and∂̄t
the obvious operators relative to the structureĴt .

The functions

zit := zi − δtGt ∂̄t z
i , (A.3)

with zj = x2j−1 + ix2j , are holomorphic onBt ; there is a neighbourhoodV of the origin

and T > 0 such that{zjT }j is a coordinate system onV . Let U ′ := T · V , then for
(x1, . . . , x2n) ∈ U ′ one defines

ui(x1, . . . , x2n) := ziT

(x1

T
, . . . ,

x2n

T

)
. (A.4)

The set{uj }j is a holomorphic system forMI aboutx [17, p. 146]. So far the construction
of Kohn is over.

Let T be a topological space andλ ∈ T → Jλ ∈ K a continuous map, whereK
is endowed with the differential structure mentioned in Section 2. Therefore givenµ ∈
T , l ≥ 0 andε > 0, there is a neighbourhood ofµ in T such that‖Jµ − Jλ‖l < ε for all
λ in this neighbourhood. (Here‖ ‖l denotes the corresponding Sobolev norm).

We denote

T
1,0
(λ) (M) := {X − iJλX : X ∈ T (M)}.
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Since{Jλ}λ is continuous, one can construct local orthonormal frames{eλj }j and{ēλj } for

T
1,0
(λ) (M) andT 0,1

(λ) (M), respectively, such that for eachj the family {eλj }λ is continuous

w.r.t. ‖ ‖l . Therefore, there are local frames{wλi }i for Ap,q(λ) which depend continuously on

λ. Denoting by∂̄λ := πλd, whereπλ is the respective projection, then the family{∂̄λwλi }λ
is also continuous. So we have the following proposition.

Proposition A.1. Given a continuous family{Jλ}λ inK, there exists a local frame{wλi } of
Ap,q(λ) such that the family{∂̄λwλi }λ is continuous w.r.t. the Sobolev norms‖ ‖l , l ≥ 0.

If in the statement of Proposition A.1 we exchange the operator∂̄λ with δλ or1λ orGλ,
the new propositions remain true.

Fixedµ ∈ T and settingJ := Jµ, let {v1, . . . , v2n} be a local basis ofTM defined
on a neighbourhood̃W of x, such thatv2j (x) = Jx(v2j−1(x)), j = 1, . . . , n, and let
{x1, . . . , x2n} be real coordinates which satisfies: (a)xj (W̃ ) ⊃ [−1,1], (b) xj (x) = 0 and
(c) ∂/∂xj = vj . For λ in a neighbourhoodV of µ we can choose a local basis{vλj }j on

W̃ with vλ2j (x) = Jx(v
λ
2j−1(x)), and coordinates{xλj }j which satisfy the conditions (a)

and (b), and the property (c) w.r.t.{vλj }j . The coordinatesxλj can be chosen so that for

eachj the family {xλj }λ is continuous w.r.t. the norm of the Sobolev spacesHl(W̃ ). By

(A.1) the corresponding family{hλkj }λ is also continuous. For fixedλ, the functions{hλkj }λ
define a complex structurêJλt by means of (A.2). Moreover, the family{Ĵ λt }λ is continuous
w.r.t. the norm of Sobolev spacesHl(EndTB), l ≥ 0. Now we can construct a holomorphic
coordinate system forMJλ using the{Ĵ λt }λ, and by Proposition A.1, (A.3) and (A.4) we
can state the following proposition.

Proposition A.2. Givenx ∈ M andµ ∈ T , there exist a neighbourhoodU of x in M, a
neighbourhoodV of µ in T , and for eachλ ∈ V a local holomorphic coordinate system
{uλj }j for MJλ defined onU , such that for everyj, {uλj }λ is a continuous family w.r.t. the
norm inHl(U), l ≥ 0.
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